
0 Acceleration Waves in Elasti3-Plastic Materials

tM. M. Balaban, AE. .yGreen and P. M. Naghdi-++

Abstract. -Acceleration waves in elastic-plastic materials are studied in

some detail on the basis of a nonlinear thermodynamical theory of elastic-

plastic continua. Attention is confined mainly to non-conducting media,

but the developments are, otherwise> general. Formulae for wave speeds

are derived, fronts of plastic loading and elastic unloading are discusse

and higher order discontinuities are shown to have the same characteristic

speeds as those of acceleration waves. An example concerning propagation

of plastic waves in a medium undergoing uni-axial motion is included.
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4s an independent thermodynamic variable and then obtain an expression

for the rate of production of entropy in a non--conducting medium. It is

a lomn result in nonlinear elasticity that in a non-conducting elastic

material (and in the absence of heat supply) the time rate of entropy

v shes and the so-called acoustic tensor is homentropic. in general,

as shorwn in sections 3 and 4, suca is not the case for an elastic-plastic

material.

In section 4, waves are represented as propagating surfaces in a

non-conducting elastic-plastic continuum, a-ross which there exist jumps

in the values of certain mechanical and thermal variables. Acceleration

waves, or singular surfaces with respect to particle acceleration, are

discussed in detail and formulae for wave speeds are derived using the

compatibility conditions of Hadamard 1131 for jumps in piecewise continaous

functions of position and time. Waves propagating through regions undef-

going plastic deformation, sufficient conditions for the existence of redl

wave speeds, and fronts of plastic loading and elastic unloading are

treated in sections 4-6. Singular surfaces with respect to any order

derivatives (in time, position or mixed) of acceleration are shown in

section 7 to have the same characteristic speeds as those of the accelera-

tion discontinuities. Finally, in section 8, we consider the simple

example of propagation of plastic waves in a medium undergoing uni-axial

motion. Other examples, such as plastic waves in simple shear or propa-

gation of spherically synmetric plastic waves, can be discussed in a

similar fashion.

The above developments for a non-conducting medium in sections 3-7

are valid for a work-hardening el&stic-plastic material which is initially
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anisotropic and are also applicable to the limiting case of an elastic-

perfectly plastic material. Of special interest is the simple formula

that the jump in the entropy production is linear in the jump of plastic

strain rate. This and other results in section 4 hold also for a definite

conductor, i.e., for a medium whose heat conduction vector has the form*

of Fourier's law.
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2. Notation and Preliminaries

Lt the motion of the continuum be referred to a fixed system of

rectangular Cartesian axes and denote the position of a typical particl 1

at time t by+

x = x (x t) (2.1)

where XA is a reference position of the particle. We require the mapping

(2.1) to be single-valued and have continuous partial derivatives with

respect to its arguments, except at some singular points, curves and

surfaces. We use the notation F = F(t) and designate partial dif-

ferentiation with respect to XA or x. as ( )A or ( )A 1 •

respectively. Latin indices take values 1,2,3 and, except when noted

otherwise, the usual summation convention for Cartesian tensors will be

employed.

The components of velocity and acceleration at the point x.

at time t are, respectively,

i = xi(xAt) • =--t(Xt) , (2.2)

where a superposed dot stands for differentiation with respect to t,

holding XA fixed. We define the strain tensor eKL by

+We use the same symbol for a function and its value without confusion.

5.
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e,= 2 ( - (2.3)

and note that its material time derivative is

e xIM-- 3 'k,K Z,,L

= (x~ m x ... x (2.4)1

where is the Kronecker symbol and

x + ) (2.5)

is the rate of deformation tensor.

in terms of the non-syrmetfic Piola-Kirchhoff stress tensor "a

the equations of motion may be written in the form

Zic,K + Po Fk = Pox (2.6)

Ki i,L SLK ' S LK S (2.7)

'where p. is the mass density of -he reference configuration, FR is

KLK1 ~the extarnally applied oody force per unit mass and SK is the symmetric

Piola-Kirchhoff stress LenU or. Let h be the flux of heat across a
0

s surface of the continuum at time t and let QK be the corresponding

Tne notation here is the same as that used by Green and Naghdi [1, Sec. 2].
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She kinrtica ei--e is u2a1tered -•hen- the continuum is

subjected to s _uner-Tosed rigid body motions at tizes t = (t+a)

Where a is a cnstn. In -fhat= follo-is -we shall be concerned with

constitutive eapuations -wich mainly involve stress, stress rate, dis-

placement gradient, velocity &7adient and such ecuations must re-main

unaltered by superposed rigid body xoions. As noted in [i], the

displacement gradient and the velocity gradient rust be replaced by

e and ei and these will be referied to as the strain tensor and

the strain rate tensor. Also the stress and the stress rate may be
taken to be sK and s- , both being invariant under superposed

rigid body motions.
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4, :
_3. Constitutive Equations and Some Related Results .

We sumarize here the principal results from the theory of elastic-

plastic continua as developed by Green and Naghdi [1,23 and also _obtain some

.elated results for later use. We limit the discussion to the material de-

scription of the theory.and, for convenience, regard the entropy S (rather.

than the temperature) as an independent thermodynamic variable.

Let the strain tensor eEL be defined at each point of the continuum

by (2.3) and let e' , a symmetric tensor with the same invariance

properties as eL, , denote plastic strain.+ We introduce a constitutive

assumotion for s in the form

Sim = S •(e.., e"I S) 1(3.1)

and admit the existence of a scalar-valued continuously differentiable

function f(sKL, e"9 S) -- called a yield or a loading function -- such

that the equation

f(SKL, ejL, s)= S , (3.2)

for a fixed value of K and e" represents a hypersurface in seven-

dimensional Euclidean space -- six components of s and the entropy

S . The scalar K , a work-hardening parameter, depends on the past

++Although we assume that eK" is synmetric, the developments which
KL

follow can be readily modified to accommodate a non-symmetric
plastic strain tensor included in [2,143,

8.
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history of the motion and is assumed to be initially positive. The rate

of change of K and the plastic strainr rate are independent of the

particular time scale used to calculate the rate of change., Moreover,

K is a linear function of and S is a linear functionSi alner•ucto o KL KL eKL

of SK and S ; and K and eK must satisfy the requirements

el =0 when f < with K=O 0KL

• A
"e = 0 when f=K with K= 0 ,f < 0
eKL

• A

K=0 when f= =0 , .f =0•KL

eKL

and

S=0 when e"KL(.4

where

-. and where the partial derivative a--f stands for the syxmmetric form

l, •f •fif-+•--) . Using the conventional terminology, the four conditions

in (3.3) in the order listed correspond to an elastic state, unloading

from an elastic-plastic state, neutral loading, and loading from an

elastic-plastic state. Supplementary to the above, we need constitutive

ii



postulates fo:: the internal energy U , the temperature T and the I t,_

flux Vector qK Thus, we introduce -

U U(e., e" , S) , (3.6)

and also assume that T and are functions of e., eo, S ar.'t hat

Q. depends in addition on T .

With the foregoing background, we now record certain addition 1

results from the theory of elastic-pla"tic continua [1,2] whica .q L1. be

utilized subsequently. The constitutive equations for and • are

/.M

"eKL •K f (3.7)

K=hKeK , (3.8)

A
both of which hold during loading, i.e., when f = K , f > 0 or during

S. A
neutral loading, i.e., when f = K , K = 0 and f = 0 . In -3.',) and

(3.8)) ý and KL are tensor functions and X is a positiva scalar

function of s., eL/ and S . In addition, we have

* As in [21, we may allow U, T, QK , as well as the stress ter. or s.

to depend also on K whose rate is specified by (3.8) belci V c-,r
simplicity, we retain here the constitutive assumptions of t - •Frms
(3.6) and (3.1) but note that the inclusion of i as an ind* ,encdent
variable will not alter the structure of most of the results Ln later
sections of the paper.

10.
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-~~ (3.:

-- (3.10)

-0 (3.11)

ates are valid both di•.ing loading and un-

A

"PO BU 0 (3.12)

-O 
VO - :a

rM T, 0- ~ (3.13)

e = _a=_ d=-eriatve B- - is understood to have the symmetric form

See Žea=-: Egdi ['1 for details. Alltthougý the main develo~m~ents
L.IJ are car-_i ed out in terms of the -Helmholtz free energy function

(•_if - T as ar- "ineeendent thermodymnamdic variable), results cor-
r- __•-_ to (3.6) and (3.10) alr also discussed [l; section 6]. In
te- I l-a-t zaiper, as --in [2J, the basic -kinematic variables are e"

a=, ea. iaich is defined by (2.3), whfnile the original form of the

[__ 1 3 [] __plo•yed e' and a variable defined by e ' = eL el- "

:5 --o for-mi of the nonlinear theory in [1,2] are entirely equivalent,
+ general the latter [2] is preferable. As emphasized in

-1 eariable el is not an "elastic" strain in the usual context

of esicit-; only in restrictive cases or in the infinitesimal theory
of elastic-plastic continua, -1 is an elastic strain tensor and is
~eperdent of eo

11.
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; ?u < o(3.14)

KIJ ~J

iwhdere (3.13) is deduced from (3.12) by considering an arbitrary homogeneous

temperature distribution for which T M = 0 and recalling chat X > 0

Tie above results are valid for any elastic-plastic continuum. For

later reference, we note that a medium is called elastic-perfectly plastic

if the loading function f and the tensor function reduce to the
++

f(s,, s)= , ' , s) , (3.15)

wnere 'K is a real constant. Since f is now independent of eK"

the loading surface is always staxionary. in this case, all terms in-

voving vanish and hK, in (3.8) must also vanish. Neutral

loading no longer exists and the condition for loading reduces to

SAf= 0 . Furthermore, it follows from (3.9) that for an elastic-perfectly

plastic medium X o with ýKL remaining finite and, in place of (3.7),

we have

KL KL(S I, S) (3.16)

"/eEL 5 n(3.17)

'The definition of an elastic-perfectly plastic material here is not
the same as that in [1; section 9], obtained by specialization of the
spatial form of the theory. A number of different definitions of elastic-
perfectly plastic materials are possible in the context of the nonlinear
"-;heory, but they coincide for a linearized theory.

12.



The results (3.12) and (3.14') remain va.1lid for an elastic-perfectly

plastic medium, but the inequality (3.13) must be replaced by

Po : Z- -, 0-,: T o (3.1-'8)•i

in this oaper, we restrict our attention mainly to a medium Whalh 'I
is a non-conductor and also exclude the heat suply arising from. exter__a

heat sources and energy losses due to radiation, i.e.,

Q(K O , r-O (319)

Then, from (3.12), we get

• au ;.(3.2oi

Also, by (2.9),

S__ . (3.21)

Remembering the constitutive assumption (3.6), we differentiate (3.10)2

to obtain

it is not essential to assume '3.19)2 which is introduced here f'or

simplicity off subsequent formulae. Further comment on this is made
in section 4.
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~~~~j =07 - is -Zero et s-tt (3-26) into (3.23)

-. . ~ s~~a~~ 'i--e~ ~t~o(326Save for s in-

= ~ - (.27)

IL = (3.28)

I MKT-

77 = pa --a (3.29)

=Se TA7e Z±~ e rrO __

(33.30)

hale s Z-.Z- l and --s dat-zi=-d fr--a (3.26) and (3-27).
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L. Acceleration Discontinuities

Let x. = x.(X,, t) denote the nosition at time t of the material

-noi'÷ wnose -3osition_ in the reference configuration is XA and consider

a movixg surface in the conti-uum, a smoo-Ch one-parameter family of points,

across wb•i.c•h certain derivatives of' xi (x,, t) have jump discontinuities.

Such a suzf&ace is called a sing~lar surface or a wave and a-y be assigned

the -aterfa2 descr:otion i(t) :,-y (e', e2 t) , where eI and

1 2
are -arameters. x2-ternatively, by elim.nation of l and e the

smooth surace S(•) may be represented as

Equation. (°. ) locates the surface as a fmuction of time in the reference

conz'igurat ionl.

The nidz normal to Z(t) will be denoted by

= , (4.2)

hfere.

v = (5 ,A 1/2 > 0

Trie speed of propagation of the surface (4.1) is

6(4.4)

!6.



Let R and R+ be one sided adjacent neighoorhoods partitioned

by Z(t) and let F(XA, t) , a function of XA , be continuous in R

and R+ but have a jump across 7(t) . We define the jump in -(XA, t)

across Z at ti•_e t by

FISF~ = F÷- F-

I

=F(Yl t),t) - F(Y(?,t),t) , (4.5)

..here F' and F designate the values of F on tihe two sides of

.(t) approached from the neighborhoods R' and R , respectively.

• "n what follows, we mai-.ly consider a singular surface of order 2,

i.e.. an acceleration wave but also briefly discuss singular surfaces of

order m > 2 . We call y(t) an acceleration wave in elastic-nlastic con-

.•inua.if xi x. (and therefore eA), e"B and S (or T) are continuous func-

tions of XA and t, while their derivatives (with respect -o XA or t) have

at most jump discontinuities across T(t) but are continuous in W and

R We also assume that the externally applied body force is so assigned

that F. is a continuous function of XA for all t . It then follows

zhat the kinematical conditions of compatibility are (see, e.g., Truesdell

and Toupin £15, section 1901)

x iA NI A N B ~Xji .iA ~V AXi ýji=V 2 ? , (4.6)

A singular surface of order 0 is a stationary surface and a singular
surface of order 1 is called a shock wave. The terminology used here is
due to Hadamard £131; see also Truesdell and Toupin £151 or Thomas [161.
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whfnere X. is an arbitrary vector and may be called the amprlitude. More

generally, w.en z(t) is a singular surface of order m with respect

to M(X,, t) , the jumps in Mrth partial derivatives of A(X , t) are

given by

0 . .. .. (r.= 0,1,...,m and m=_1,2,..

For an. accelaration wave, in view of our constitutive assumptions

in section

U , .3 , - , X ,

(k.8)

S. D , K

ma:sz be continuous across a singular surface for all XA and t

The dyna-mical equations (2.6) hold on either s'de of the wave, but at

a singular surface of order P they yield

xA 1 AB,B 1 +,I xi,•A! sA = Po •-•

Recalling (4.6), application of (4.7) to the first derivatives of the

stress gives

V[ s.,I 7ý 'L •(.0

18.



and eo.'ation (14.9) cbeca-es

iwhere (4.6) and (4.10) have been used. Also, from (3.20), we have

I

Provided BU/-oe-' does nort vanis-n, according 't-o (14.12), the jump~ in

the eatropy productioi. is linear in the jump of plastic strain rate.

It is therefore clear that acceleration waves (with V J 0), in a non-

conducting elastic-plastic mediim, are not ho-mentropic.

In the rest of this section, we consider three types of wave propa-

gation as follows:

(i) in the absence of loading from an elastic-plastic state, on

either side of the singular surface E(t) , we have either a state of

unloading &r neutral loading. Recalling (3.29), we then write

It is not difficult to see that the result.(4.12) holds even without
the assumption (3.19)2; it is only necessary to assume that r is a

continuous function of XA for all t

+An acceleration wave is called homentropic if SM. 0 .

(Recall that if 0 =0, it follows from S 0 that

S = 0). The relation (4.12) may be contrasted with the cor-

responding result obtained by Coleman and Gurtin [5]. For the class

of materials with memory discussed in [5], they found that every ac-

celeration wave (with V / 0) in a non-conductor is homentropic.

19.



and with, the help of (2.L) and (4.6) this becomes

ILI l- o _•••x (4.14)
- ý h

Using the notation V V for this case, substitution of (4.14) into
(e)(1.)

(L.1) resu(ts in

[Aj- (v2e • ()6iIJ=0(.5

and zae associated eigenvalue equation is

det (A. - (V ..s 6~ 0 (4f.16)
13 (e) po (NO)ij

-Where we h-ave defined

S(N) =sKL-"KN"L

A A.. = x. x. NKNMP
ij 31 1,L iN K 7M

Mathematically, this case is similar to that for nonlinear elasticity

with A.. playing the role of the homentropic acoustic tensor and with

SS = 0 . Here, however, the tensor A.. depends on the current

state of polastic strain e' , as well as on eK and S ; it can be

identified with the homentronic acoustic tensor of elasticity only when

the maedixcm has no prior history of plastic deformation.

20.



(ii) WIhen loading is taking place on both sides of the wave front,

then by (3.27) we have

or '
~S~= po V(AKFf T GKL 1yý T,4.8

if we also use (2.4) and (4.6). Then, with the notation V V for

this case, from (4.11) and (4.18) we obtain

(Aij - Gi HIj (p) -P--. ijVj = 0 , (4.19)

and the associated eigenvalue equation is now

det LA.. - Gi H.- (V(P - -o S(N)).iJ = 0 , (4.20)

wnere

. Xi,L K GKL

H. = x.NNMHMj , N

This describes the propagation of an acceleration wave through a region

21.
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'T'

urde -.. Q '

0oing plastic deformation, i.e., a nlastic wave, and will )e further

discussed in the next section.

(iii) Finally we use the notation V = V to correspoi. to the
(u)

case when the r'egion R' is in a state of loading and the recj'n R7

is in a state of unloading or neutral load-ng, with V= V .orrespond- F
U.)

i-g to the reverse of this situation. in the first of these e es, it

folows from (3.27) and (3.29) that

=-°o V(u) Anla- Nx Xk - Go GKL a "(4.22)

Hence, with the help of (4.11), we obtain

A. 1% G, F e (4.23)
S{ij (u•() - Po S(N)) i•] v (u) - 10 2

On the other hand, whea R+ is in a stuate of unloaddng or neutral loading

and R is La a state of lcading, by (3.27) and (3.29) we f.ave

P- pAKI~2da - yIN + [ p~ n p0I GHN

0 I
"+ (A .L I,)

S oV( )(AE•• GE h )• XkM ?k+ G 0 G: . (4.24)

in the literature, the term "plastic wave" is often usi to denote a
noving elastic-plastic interface (see, e.g., Hopkins [ 71).

22.
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---- • ...... j f•li js the ec-ation

S( .- S -(.25)-. *_s ) s) 2. -N _

•e • • co-• •rr-¢_ to a font off u.nloadi--" pro-gaating into a

- e...- _ z -.s• _ -..o-• • a 'z!astic !• front• resT-ectively

tz t __.=e to F- "e equtos __ ese will' be discussed

•: -_e.-e deS atsr are caa-_ied out for a wor•_-kn-e---a - e-asTic-

. - '-Z-ch -ti-a-uy is -nisotropic. We now note that the

ra s (1..!7)_ (4.2-) (h;.23) and (14.25) hold also in the case of an elastic-

-nezfeetl =-Iasc contimm.. Reca-0-n (,3.16) an.d th;e fact that in t~his i
•-se f? - -heil e X becomes in-Fýi••-t- e as we aporoach this !Lrniting

Cae a bseimg t-- the o"-' term in the above formula-ý ý.which deneids

4m is G. ngoang, it follows that as x?• ,

?• "• •";'•(4.26)

for_ an eltic-_ierfectly plastic medium.

•_e resa~ts 6otained in this section are valid for an elastic-olastic

-aerial zhich is a non-conductor. However, it is alsc pcssible to dis-

cuss a -. a r e! develoz~ment for a definite conductor, i.e., for a medl).•.

-Zwose heat conduction vector In the form+

+Ec-ati o (4.27) is in the form of Fourier's law and the heat conduction
tensor - a function of e. e". and T, is positive definite.

23.



% = - (4.27)

in this case, it is more convenient to choose T (rather than s) as an

independent thermodynamic variable and to use the form of the theory in

wfhich the cons-.itutive eauations are ex-oressed in terms of the Helmholtz

free energy function

A=U-TS , (4.28)

together with e:propriate changes in section'-+ 3. in view of the con-

stizutive and smoothness assumptions, it follows from the integrals form

of the ecuation of balance of energy that every acceleration wave, in an

elastic-olastic material subject to Fourier's law of heat conduction, is

homothermal, i .e..

~T HTM 0 .(L..29)

Moreover, we now obtain

BA i (4.30)

in place of (4.12). it should now be clear that results parallel to those

between (4.13) and (4.26) can also be deduced in this case, but we do not

pursue the matter further.

':-or details, see [1,23. In this form of the theory, A, sKL and S, as

well as f, h:l and ýKL, are functions of eM, e" and T. Also, instead

of (3.19)2, we only assume that the heat supply is so assigned that r is
a continuous function of XA for all t.

*This conclusion parallelq the corresponding result for elastic materials

[3] and for the class of materials with memory considered in [5] with
the heat flux vector in the form (4.27). For a definite conductor, the
heat conduction tensor in [53 is given a more general definition than
that in (4.27).
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A 1. W T '0

/ 25.



for all arbitrary symmetric WKL , with the equality holding if and only

if WKL is identically zero.

If (5.3) holds, then the matrix Aij has three real eigenvalues,

which may be ordered numerically as

A 1 1- A 2 k A 3 ,(5.4)

and which identically satisfy the equation

det JA - A = C (a=1,2,3) (5.5)

Associated with these eigenvalues are a set of three eigenvectors

(c¢ = I,2,3) which are found to within a s calar magnitude by the

homogeneous system of equations

(Aij -] A o (5.6)

Now, following the technique used by Mandel [10], let the eigenvectors

0 e) be referred to the principal directions of the matrix A and
i ij

write

Aij = A, ij , (5.7)

where a bar below an index signifies suspension of the summation convention

for that index. Then, the eigenvalue equation (4.19) for plastic waves

becomes
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dot I(A- Y)6i - G± 1 " (5.8)

which when expanded has the form

P(Y) £ (Ax - Y)(A 2 - Y)(A 3 - Y) - G1 HI(A 2 - Y)(A3 - Y)

-G2 H2 (A3 - Y)(Al - Y) G 3 113(AI - Y)(A 2 - Y) 0 (5.9)

where

Since (5.9) is a cubic polynomial, at least one of the roots Y (ciul,2,3)

mu•t be real. Of course, with the help of (5.10), it im seen that the

w(ave speed corresponding to Y will be real only if

S+) -L o(5.11)

We also find from (5.9) that

P(Al) a - G. HI(A 1 - A2 )(A - A 3)

P(A2) - G2 H2 (A1 - A2 )(A2 - A 3 ) , (5.12)

P(A 3 ) = - 03 13 (A I - A3 )(A2 - A3 )
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In view of (5.4), we observe from (5.12) that P(A1 ), P(A2 ) and P(A3 )"

have the signs of - GI Hl , + G2 H2  and - G3 H3 , respectively. Noting

that P(Y) - c- as Y- + w while P(Y) - + c as Y- - , we deduce

the following information about the wave speeds:

if G' H1 , G2 H2  and G3 H3 all have the same sign, then Yl, Y2

and Y3 are real and distinct; if this sign is -positive, then

A1 B; Y1 - A2 Z- Y2 A 3 Z Y ,3 (5.13)

while if it Is negative,

Y, 'ýA 1ýY2 -t-.A 2 Y3 ?;A 3(5 .2-4)

It is clear, however, that if V(p) is to be a real wave speed, the

inequality (5.11) must hold.

By comparing (5.6) with (4.15), we further observe that A are

precisely the eigenvalues for the case where there is no loading (i.e.,

additional plastic deformation) on either side of the wave front. It

w.ould, therefore, be of physical interest to compare A, , the speed of

The fastest "elastic" wave, with the real roots among YI, Y2  and Y3

SL"Lilar comparisons for A2  and A3 may be of interest.
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6. Fronts of Loading and Unloading

Any surface in the medium which separates a region of load'ng from

one of unloading or neutral loading is called an elastic-plastic interface.

With reference to case (iii) of section 4, suppose such a surface is moving

through the medium with an acceleration discontinuity coinciding with it.

For a sqec,. •ied history of loading and for known conditions ahead of the
front, formally, we have

e e (XM, t) , f e fl (= ri t) ,

e KL eE(,t KL KLXt

(6.1)

s =L sKL,(XM t) , s = s(x, t)

these quantities being known functions of position and time. From (6.1),

we can compute the strain rate ahead of the wave front, i.e.,

".+ ."4-

e K=e t)
eK1 eL•,t, (6.2)

Using (6.2.) in the left-hand side of (3.2), we may then define

t(xM, t)- f(SKL(XM, t), e"l,(XM, t), S(xM, t)) - i (6.3)

where K is a known function of XM, t . The velocity V of the

elastic-plastic interface, and hence of the surface of acceleration

discontinuity, may be computed from (6.3) by a formula of the type

(4.4).

Since eEL and V are determined as functions of XA and t

equations (4.23) or (4.25) each constitute a set of three linear

29.



inhomogeneous equations in the discontinuity amplitudes )- . It follows

that X. can be determined uniquely for both cases, exceptwhen the

determinants of the coefficients of ). vanish. However, these cor-

respond to cases in which the speeds are precisely V(e) and V(p)

characterized by (4.16) and (4,19), respectively. For example, suppose

the elaBstic-plastic interface advances into a plastic region with the

speed V satisfying equation (4.16). Then, provided G. J 0 , it(e)e = 0 Hence, using (3.30),

follows from (4.23) that IL. e'

0 (6.4)EL=

so that we no longer have a region of loading just ahead of the wave --

it can be one of neutral or unloading region.

On the other hand, suppose the elastic-plastic interface advances

into a region of unloading or neutral loading with the speed V(p)

satisfying equation (4.20). Then, provided Gi J 0 , it follows from

(4.25) that

+• = 0 (6.5)

This corresponds to propagation into a region of neutral loading, if we

recall (3.30). Some of the results of W. A. Green [12] obtained under

more restrictive conditions are compatible with those given here.

30.



izies af a2_1 orer h-i-e -th--

CT -b -Ed th-c! on -2- i e r~a

el-_ st. c sn ad e' iet.-- oveow

~ S ___ ~v s. ine y (325) and

A.- a:.ZioSz of e,,e, and S it

3 0'%
3z -r 3 - :-a n -- 1

=T f -- i

du~ring un~cadaing or neutral loading.

Consider now. a sing~al-a surface T,(t) of order 3 1-ith res'peez to

aso- ent- Sic X A'X e-,,I e-,, L-entS and their first oarzial

See :11'uesdel2 131 f:-or ageneral derivattion.
pra singular surface of order m, we need to make the additiona

ass-mntion th~natL th-e (r.-2)t!--h tim~e derivat--ive of F. is a continuaous
function. of X, f-:Or all.



derivatives are continuous at, such a surface, t.he jump of the t-ime

derivatuive o--: the equations of~ motion. (2.6) tak-es t~he form

Jý P (7.3)K

~~0- si7 f (t) is in a state o-f loazding, then the ,jur.m of

s across (-)is

nLI =~ IFI C-.. ,&,vT)xm,MIXm N 74

~ ~ .1. 2s crreoods to he case Wi) of secto 1.ad the results

cof res'Dond~ing to arid n can, be discussed in a simil..ar manner.

Na~king use of (.7) we 'Lind the jvmp relati ons for 3rd order par-L~al

5.erivaoGives of-, di:solacement and 2nd order -oartial derivatives of stress.

7..ey are

(7.5)

L S Nww N vf zV NQ Vnvm, po,?Q P QKL LKLQ iQ (7.6)
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where Ci is an arbitrary vector and K is an arbitrary tensor.

Applications of (7.5) and (7.6) to (7.3) and (7.4) give

V2 ,KL po(AKp - G• Hq)xm,p Q • (7.7)

-V x NB AB V SABNANBi poV i (7.8)i,A " A A .

After eliminating vAB between (7.7) and (7.8), with the help of (4.17)

and (4.21), we obtain the equation

((Aij - G, H.) - (V2 -- L s(N))S9jlCj = 0 (7.9)

Comparison of (7.9) with (4.19) gives the desired result. In an analogous

manner we may show, by differentiating (7.1) and (7.3) a sufficient

- number-of times, that singular surfaces of higher order have the same

plastic wave speeds as those of order 2.
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8. Eam Fx.e2ple: Plasti . Waves in a Uni-Axial mot n

We consider -ere the simple exapile of plastic waves, -i an initially

homogeneous and isotropic material, corresponding to the i L-axial motion

x_ -x2(,t) x 2 -3 =x 3  . (8.3)

By (2.3) ar.d (8.1), we have

1 2
e1~(~(-l) , ~=~z ,all other e1  ) ,(82

throughout the his-.ory of deformation a-ad we also assume '

e, all other =0 (8.3)

'Here, we concern ourselves with only one aspect of the rob!.°.., nanmely

zhe determination of velocities of propagating waves if n isotionic

macerial, using the results of section 4 . Thus, we ass .,e that a state

of plastic deformation corresponding to (8.2) and (8.3) .s co-apatible "

with the field equations which must also be used in a ,apletc. analysis

of the nroblem.

Before proceeding further, we need to recall cert a results con-

ceraing the forms of the constitutive functions of sec:'on 3. For an

initially isotropic material, the internal energy func ;Lon U , the

loading function f, • and the work-hardening tensr h b are
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-~ ~ .1g s i (8.cL:) -i

- -. = e°. --. -- ,-

-x. -2 e•e • J X.e: -3
(AF

e e el
4jI C - . T.' rv

t-.: e e e VL e" e"
r. Tre TM

S'---- r-j,. -aus, be e-.-Apressible as a f'mnction of S and the ten

-Zcir in-•amria-s consisting of' -2, I" ara

X ' s: s:. s , (8.6)

S II - II e/

e six =e" e, s~-K eilSE L2 nK. TV1, Sr{

(8.7)
T. e n 4 eu el

3 LM s~I K(L Dv eL MIIT NK

The constitutive equation for KL has the form [i]

Our discussion here parallels that in section 7 of' [L], fnere further
details can be found.

35.



e-~ &7i , S s

s,- e e e s,

* ~ Y s RL. K, eý9

~*~a sz:azx- cr-ssion for h , wT.-hera the cefce~s'

0; a*zd io h1 1... are fumczt-ons of S

~~~~e~G :nvaIa__ vnby()5,6-' (.)and (8.7).

k,ýs .., -need zo clalcula:te thre coefffic--e-nts in (4n 1 .1,w

':ow :nz.,ord briefly certain parzial derivatives w-hich occur in (3.25).

2
ý 2 '6u e3 Ou ( e l

ell + Z (, 2 -F'e- (e)/

B_ U e" Fjel, IB

oi2 l Be33  OI)

33oi

1e2 2  e23  e31

arna-Cý,ous resultus holding f~or -ae- Also,
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G ~- '-.--Oc 2- c-- -

-nlgu -e ho o
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4'..
hh 0 1h 2  h 3 a3

÷s

5,5

+24 6 0 el/ + 2 }(e#)h sll } (sll)2 (e{ 1 )2

h6 7 8

"*(8.13)
k2 }'{ ý1 + {02 } s2
223 +b h 22 h s22)

h22 h 33 ho hI h2

012 ' 23 = 3 1 O=

h12 = h23 = h31 = 0

and the compoonents of 8f become

- K + 2 Sll + 3(sll) 0 + ell +(elL
Bs 6 , B2

+2ell Sl B3 + 2(e" ) 2 sl BL4

11 11 5L 3  111.L

(8.14)

.S. .- -f + 2 sL +2 + 3(s )2 -6

bS22 - S 33  BK1  ~22 BF2 22)B3

-6_•f. a_!f. 6f .: 0
bSl 2  Bs23 's 3 1

From the results (8.9) to (8.14), we can now obtain the following informa-

tion about the coefficients on the left-hand sides of (3.25) and (3.28), i.e.,
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A1112 " Al 1 33 m A112 3 - A32 1 3 - A12 2 2 - A1 2 2 3 - A1 2 3 3

"= A1 3 2 2 - A1 3 2 3 - A1 3 3 3 ' A2223 0 A23 3 3  0

(3. 15)

e12 - C23 C - 0 , D1 2  D2 3  D 31 0

H12 H 23 H- 31 0 G 12 G23 G 31 0

and

A1 2 12 - A1 3 1 3  A2 32 3

A1 12 2  A 1133

A2222 A2 2 3 3  A 3333

ce 22 c 33 , De 22 D33 ,

H2 2  H3 3  , G 33 (8.16)

B1212 B1 3 1 3  B2 3 2 3

B112 2 = B1 1 3 3

B2 2 1 1 = B3311

B2 2 2 2 - B2 2 3 3 = B3 3 2 2 - B3333
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together wjith results analogous to the first of (8.15) for BKI

With the help of (8.1), (8.15) and (8.16), the value of S(,) and the

non-vanishing components of AiJ, G, and Hi in (4.17)2 and (4.21) are

11 '1 sW 22 2 -3'

All 2 N All 1  + (le + 12

1 2 )A112

12 = y ! N2(An, 2 + A1 2 1 2)

A. Y N N,•(A, I2 + A-12 2 ) , (8.17)

"A22  N• AZ1 2 +(•z +
Z + +NN3)A N2)

23 X2 N 3 (A2 2 2 2 + A1 2 12 )

A3=(N~ 2 ),2 Nr A33 1 2'1212 -3 3333

and

G,1= yNG 11 , G 2 =N2 G22  G 03 = N 3 G2 2

(8 .18)

H!= N1 Hll , H2 = N2 H2 2  H3 = N 3 H2 2

For a prescribed wave front which is specified by its normal NK

(generally a function of position), we may substitute (8.17) and (8.18)
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into the eigenvalue equation (4.20) and thereby determine the wave

speeds.

Consider now a plane wave front whose normal is at an arbitrary

(oblique) angle to the X1 -axis. Without loss in generality, we may

choose the direction of the X 3-axis to be perpendicular to the plane

of the Xl-axis and the normal to the wave front. In this way, the

problem is reduced to a two dimensional one, so that

NK-= (Nl N 2, 0) , (8.19)

where N,, N2 are constants (for plane waves) satisfying

N ,+ N2 l . (8.20)1 2

In view of (8.19), (8.17) and (8.18) simplify and the non-vanishing

components of (4.1 9 ) become

(A11  G1 G 1 H Y)%1 + (t.12 - G1 H 2 ) 2  0

(A1 2 - G2 Hx 1)I + (A2 2 - G2 H2 - Y)x2 = 0 (8.21)

(A2 2 - Y)%3-- 0

where the coefficients in (8.21) are obtained from those in (8.17) and

(8.18) after setting N3 = 0 and where Y is defined by (5.10).

Corresponding to the eigenvalue
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Y 2(8.2) i

~~:o::( G- H-: 0c.t~

and- .---- h, azý-Zray~ ea---c (4.) i

~sa - ? a-zar.e wa.:e wose ofrct o-_ rc-oagation is %,_e t

zl- dzrec-ýýC~ Of ~ strain-, w a

~e.,( 8 .7 amd823 reduce to

GI -A -, 1 (8.25)-A,- 1 , ~ ~ C9 =23~22 '3 0h 2 37

1 32

~-.zhe cormponenzs Off (4.19) become
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so3~z~zn 2GE3=. to sn-oc m n a!a wave f.or -;--ich

- - . aritray , 3.27)

a=4 t:o 7z-5O frvre ae or :h-ich

= ~ , ~ a:nz X- abiraý" (8 (3.2)

-7=e casze Of a ___-_- wa'ze -whose direction. of, pOroagation is traznsverse

=(0, 1, 0) ,(8.29)

can- be disc-assed si-rdarly w,,ith results corresponding t'o (8.27) and

(5.23) n te f=r

Y= ~ C 2~ arbi trary

Y=A1, , arbitrary ,(UO

Y -22 X3 arbit'rary

- -~ow~ - ~.Thereults repoorted here were obtained in the course

c2resear,ýn s,=-zorted by the U.S. Of-fice of Naval Research under Contract
:Cli-S9--*.-o23-100-,8 with the Uni-'versi ty of Calif ornia, Berkeley ( C..}

One ofus (AS.-G.) held a visiting appointment at U.C.B. during 1969.
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